1198 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Go
		
	
	
			
		
		
	
	
			1198 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Go
		
	
	
// Copyright 2010 The Go Authors.  All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// Package json implements encoding and decoding of JSON objects as defined in
 | 
						|
// RFC 4627. The mapping between JSON objects and Go values is described
 | 
						|
// in the documentation for the Marshal and Unmarshal functions.
 | 
						|
//
 | 
						|
// See "JSON and Go" for an introduction to this package:
 | 
						|
// https://golang.org/doc/articles/json_and_go.html
 | 
						|
package json
 | 
						|
 | 
						|
import (
 | 
						|
	"bytes"
 | 
						|
	"encoding"
 | 
						|
	"encoding/base64"
 | 
						|
	"fmt"
 | 
						|
	"math"
 | 
						|
	"reflect"
 | 
						|
	"runtime"
 | 
						|
	"sort"
 | 
						|
	"strconv"
 | 
						|
	"strings"
 | 
						|
	"sync"
 | 
						|
	"unicode"
 | 
						|
	"unicode/utf8"
 | 
						|
)
 | 
						|
 | 
						|
// Marshal returns the JSON encoding of v.
 | 
						|
//
 | 
						|
// Marshal traverses the value v recursively.
 | 
						|
// If an encountered value implements the Marshaler interface
 | 
						|
// and is not a nil pointer, Marshal calls its MarshalJSON method
 | 
						|
// to produce JSON. If no MarshalJSON method is present but the
 | 
						|
// value implements encoding.TextMarshaler instead, Marshal calls
 | 
						|
// its MarshalText method.
 | 
						|
// The nil pointer exception is not strictly necessary
 | 
						|
// but mimics a similar, necessary exception in the behavior of
 | 
						|
// UnmarshalJSON.
 | 
						|
//
 | 
						|
// Otherwise, Marshal uses the following type-dependent default encodings:
 | 
						|
//
 | 
						|
// Boolean values encode as JSON booleans.
 | 
						|
//
 | 
						|
// Floating point, integer, and Number values encode as JSON numbers.
 | 
						|
//
 | 
						|
// String values encode as JSON strings coerced to valid UTF-8,
 | 
						|
// replacing invalid bytes with the Unicode replacement rune.
 | 
						|
// The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
 | 
						|
// to keep some browsers from misinterpreting JSON output as HTML.
 | 
						|
// Ampersand "&" is also escaped to "\u0026" for the same reason.
 | 
						|
//
 | 
						|
// Array and slice values encode as JSON arrays, except that
 | 
						|
// []byte encodes as a base64-encoded string, and a nil slice
 | 
						|
// encodes as the null JSON object.
 | 
						|
//
 | 
						|
// Struct values encode as JSON objects. Each exported struct field
 | 
						|
// becomes a member of the object unless
 | 
						|
//   - the field's tag is "-", or
 | 
						|
//   - the field is empty and its tag specifies the "omitempty" option.
 | 
						|
// The empty values are false, 0, any
 | 
						|
// nil pointer or interface value, and any array, slice, map, or string of
 | 
						|
// length zero. The object's default key string is the struct field name
 | 
						|
// but can be specified in the struct field's tag value. The "json" key in
 | 
						|
// the struct field's tag value is the key name, followed by an optional comma
 | 
						|
// and options. Examples:
 | 
						|
//
 | 
						|
//   // Field is ignored by this package.
 | 
						|
//   Field int `json:"-"`
 | 
						|
//
 | 
						|
//   // Field appears in JSON as key "myName".
 | 
						|
//   Field int `json:"myName"`
 | 
						|
//
 | 
						|
//   // Field appears in JSON as key "myName" and
 | 
						|
//   // the field is omitted from the object if its value is empty,
 | 
						|
//   // as defined above.
 | 
						|
//   Field int `json:"myName,omitempty"`
 | 
						|
//
 | 
						|
//   // Field appears in JSON as key "Field" (the default), but
 | 
						|
//   // the field is skipped if empty.
 | 
						|
//   // Note the leading comma.
 | 
						|
//   Field int `json:",omitempty"`
 | 
						|
//
 | 
						|
// The "string" option signals that a field is stored as JSON inside a
 | 
						|
// JSON-encoded string. It applies only to fields of string, floating point,
 | 
						|
// integer, or boolean types. This extra level of encoding is sometimes used
 | 
						|
// when communicating with JavaScript programs:
 | 
						|
//
 | 
						|
//    Int64String int64 `json:",string"`
 | 
						|
//
 | 
						|
// The key name will be used if it's a non-empty string consisting of
 | 
						|
// only Unicode letters, digits, dollar signs, percent signs, hyphens,
 | 
						|
// underscores and slashes.
 | 
						|
//
 | 
						|
// Anonymous struct fields are usually marshaled as if their inner exported fields
 | 
						|
// were fields in the outer struct, subject to the usual Go visibility rules amended
 | 
						|
// as described in the next paragraph.
 | 
						|
// An anonymous struct field with a name given in its JSON tag is treated as
 | 
						|
// having that name, rather than being anonymous.
 | 
						|
// An anonymous struct field of interface type is treated the same as having
 | 
						|
// that type as its name, rather than being anonymous.
 | 
						|
//
 | 
						|
// The Go visibility rules for struct fields are amended for JSON when
 | 
						|
// deciding which field to marshal or unmarshal. If there are
 | 
						|
// multiple fields at the same level, and that level is the least
 | 
						|
// nested (and would therefore be the nesting level selected by the
 | 
						|
// usual Go rules), the following extra rules apply:
 | 
						|
//
 | 
						|
// 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
 | 
						|
// even if there are multiple untagged fields that would otherwise conflict.
 | 
						|
// 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
 | 
						|
// 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
 | 
						|
//
 | 
						|
// Handling of anonymous struct fields is new in Go 1.1.
 | 
						|
// Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
 | 
						|
// an anonymous struct field in both current and earlier versions, give the field
 | 
						|
// a JSON tag of "-".
 | 
						|
//
 | 
						|
// Map values encode as JSON objects.
 | 
						|
// The map's key type must be string; the map keys are used as JSON object
 | 
						|
// keys, subject to the UTF-8 coercion described for string values above.
 | 
						|
//
 | 
						|
// Pointer values encode as the value pointed to.
 | 
						|
// A nil pointer encodes as the null JSON object.
 | 
						|
//
 | 
						|
// Interface values encode as the value contained in the interface.
 | 
						|
// A nil interface value encodes as the null JSON object.
 | 
						|
//
 | 
						|
// Channel, complex, and function values cannot be encoded in JSON.
 | 
						|
// Attempting to encode such a value causes Marshal to return
 | 
						|
// an UnsupportedTypeError.
 | 
						|
//
 | 
						|
// JSON cannot represent cyclic data structures and Marshal does not
 | 
						|
// handle them.  Passing cyclic structures to Marshal will result in
 | 
						|
// an infinite recursion.
 | 
						|
//
 | 
						|
func Marshal(v interface{}) ([]byte, error) {
 | 
						|
	e := &encodeState{}
 | 
						|
	err := e.marshal(v)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	return e.Bytes(), nil
 | 
						|
}
 | 
						|
 | 
						|
// MarshalIndent is like Marshal but applies Indent to format the output.
 | 
						|
func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
 | 
						|
	b, err := Marshal(v)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	var buf bytes.Buffer
 | 
						|
	err = Indent(&buf, b, prefix, indent)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	return buf.Bytes(), nil
 | 
						|
}
 | 
						|
 | 
						|
// HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
 | 
						|
// characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
 | 
						|
// so that the JSON will be safe to embed inside HTML <script> tags.
 | 
						|
// For historical reasons, web browsers don't honor standard HTML
 | 
						|
// escaping within <script> tags, so an alternative JSON encoding must
 | 
						|
// be used.
 | 
						|
func HTMLEscape(dst *bytes.Buffer, src []byte) {
 | 
						|
	// The characters can only appear in string literals,
 | 
						|
	// so just scan the string one byte at a time.
 | 
						|
	start := 0
 | 
						|
	for i, c := range src {
 | 
						|
		if c == '<' || c == '>' || c == '&' {
 | 
						|
			if start < i {
 | 
						|
				dst.Write(src[start:i])
 | 
						|
			}
 | 
						|
			dst.WriteString(`\u00`)
 | 
						|
			dst.WriteByte(hex[c>>4])
 | 
						|
			dst.WriteByte(hex[c&0xF])
 | 
						|
			start = i + 1
 | 
						|
		}
 | 
						|
		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
 | 
						|
		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
 | 
						|
			if start < i {
 | 
						|
				dst.Write(src[start:i])
 | 
						|
			}
 | 
						|
			dst.WriteString(`\u202`)
 | 
						|
			dst.WriteByte(hex[src[i+2]&0xF])
 | 
						|
			start = i + 3
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if start < len(src) {
 | 
						|
		dst.Write(src[start:])
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Marshaler is the interface implemented by objects that
 | 
						|
// can marshal themselves into valid JSON.
 | 
						|
type Marshaler interface {
 | 
						|
	MarshalJSON() ([]byte, error)
 | 
						|
}
 | 
						|
 | 
						|
// An UnsupportedTypeError is returned by Marshal when attempting
 | 
						|
// to encode an unsupported value type.
 | 
						|
type UnsupportedTypeError struct {
 | 
						|
	Type reflect.Type
 | 
						|
}
 | 
						|
 | 
						|
func (e *UnsupportedTypeError) Error() string {
 | 
						|
	return "json: unsupported type: " + e.Type.String()
 | 
						|
}
 | 
						|
 | 
						|
type UnsupportedValueError struct {
 | 
						|
	Value reflect.Value
 | 
						|
	Str   string
 | 
						|
}
 | 
						|
 | 
						|
func (e *UnsupportedValueError) Error() string {
 | 
						|
	return "json: unsupported value: " + e.Str
 | 
						|
}
 | 
						|
 | 
						|
// Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
 | 
						|
// attempting to encode a string value with invalid UTF-8 sequences.
 | 
						|
// As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
 | 
						|
// replacing invalid bytes with the Unicode replacement rune U+FFFD.
 | 
						|
// This error is no longer generated but is kept for backwards compatibility
 | 
						|
// with programs that might mention it.
 | 
						|
type InvalidUTF8Error struct {
 | 
						|
	S string // the whole string value that caused the error
 | 
						|
}
 | 
						|
 | 
						|
func (e *InvalidUTF8Error) Error() string {
 | 
						|
	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
 | 
						|
}
 | 
						|
 | 
						|
type MarshalerError struct {
 | 
						|
	Type reflect.Type
 | 
						|
	Err  error
 | 
						|
}
 | 
						|
 | 
						|
func (e *MarshalerError) Error() string {
 | 
						|
	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
 | 
						|
}
 | 
						|
 | 
						|
var hex = "0123456789abcdef"
 | 
						|
 | 
						|
// An encodeState encodes JSON into a bytes.Buffer.
 | 
						|
type encodeState struct {
 | 
						|
	bytes.Buffer // accumulated output
 | 
						|
	scratch      [64]byte
 | 
						|
}
 | 
						|
 | 
						|
var encodeStatePool sync.Pool
 | 
						|
 | 
						|
func newEncodeState() *encodeState {
 | 
						|
	if v := encodeStatePool.Get(); v != nil {
 | 
						|
		e := v.(*encodeState)
 | 
						|
		e.Reset()
 | 
						|
		return e
 | 
						|
	}
 | 
						|
	return new(encodeState)
 | 
						|
}
 | 
						|
 | 
						|
func (e *encodeState) marshal(v interface{}) (err error) {
 | 
						|
	defer func() {
 | 
						|
		if r := recover(); r != nil {
 | 
						|
			if _, ok := r.(runtime.Error); ok {
 | 
						|
				panic(r)
 | 
						|
			}
 | 
						|
			if s, ok := r.(string); ok {
 | 
						|
				panic(s)
 | 
						|
			}
 | 
						|
			err = r.(error)
 | 
						|
		}
 | 
						|
	}()
 | 
						|
	e.reflectValue(reflect.ValueOf(v))
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
func (e *encodeState) error(err error) {
 | 
						|
	panic(err)
 | 
						|
}
 | 
						|
 | 
						|
func isEmptyValue(v reflect.Value) bool {
 | 
						|
	switch v.Kind() {
 | 
						|
	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
 | 
						|
		return v.Len() == 0
 | 
						|
	case reflect.Bool:
 | 
						|
		return !v.Bool()
 | 
						|
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
 | 
						|
		return v.Int() == 0
 | 
						|
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
 | 
						|
		return v.Uint() == 0
 | 
						|
	case reflect.Float32, reflect.Float64:
 | 
						|
		return v.Float() == 0
 | 
						|
	case reflect.Interface, reflect.Ptr:
 | 
						|
		return v.IsNil()
 | 
						|
	}
 | 
						|
	return false
 | 
						|
}
 | 
						|
 | 
						|
func (e *encodeState) reflectValue(v reflect.Value) {
 | 
						|
	valueEncoder(v)(e, v, false)
 | 
						|
}
 | 
						|
 | 
						|
type encoderFunc func(e *encodeState, v reflect.Value, quoted bool)
 | 
						|
 | 
						|
var encoderCache struct {
 | 
						|
	sync.RWMutex
 | 
						|
	m map[reflect.Type]encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func valueEncoder(v reflect.Value) encoderFunc {
 | 
						|
	if !v.IsValid() {
 | 
						|
		return invalidValueEncoder
 | 
						|
	}
 | 
						|
	return typeEncoder(v.Type())
 | 
						|
}
 | 
						|
 | 
						|
func typeEncoder(t reflect.Type) encoderFunc {
 | 
						|
	encoderCache.RLock()
 | 
						|
	f := encoderCache.m[t]
 | 
						|
	encoderCache.RUnlock()
 | 
						|
	if f != nil {
 | 
						|
		return f
 | 
						|
	}
 | 
						|
 | 
						|
	// To deal with recursive types, populate the map with an
 | 
						|
	// indirect func before we build it. This type waits on the
 | 
						|
	// real func (f) to be ready and then calls it.  This indirect
 | 
						|
	// func is only used for recursive types.
 | 
						|
	encoderCache.Lock()
 | 
						|
	if encoderCache.m == nil {
 | 
						|
		encoderCache.m = make(map[reflect.Type]encoderFunc)
 | 
						|
	}
 | 
						|
	var wg sync.WaitGroup
 | 
						|
	wg.Add(1)
 | 
						|
	encoderCache.m[t] = func(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
		wg.Wait()
 | 
						|
		f(e, v, quoted)
 | 
						|
	}
 | 
						|
	encoderCache.Unlock()
 | 
						|
 | 
						|
	// Compute fields without lock.
 | 
						|
	// Might duplicate effort but won't hold other computations back.
 | 
						|
	f = newTypeEncoder(t, true)
 | 
						|
	wg.Done()
 | 
						|
	encoderCache.Lock()
 | 
						|
	encoderCache.m[t] = f
 | 
						|
	encoderCache.Unlock()
 | 
						|
	return f
 | 
						|
}
 | 
						|
 | 
						|
var (
 | 
						|
	marshalerType     = reflect.TypeOf(new(Marshaler)).Elem()
 | 
						|
	textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
 | 
						|
)
 | 
						|
 | 
						|
// newTypeEncoder constructs an encoderFunc for a type.
 | 
						|
// The returned encoder only checks CanAddr when allowAddr is true.
 | 
						|
func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
 | 
						|
	if t.Implements(marshalerType) {
 | 
						|
		return marshalerEncoder
 | 
						|
	}
 | 
						|
	if t.Kind() != reflect.Ptr && allowAddr {
 | 
						|
		if reflect.PtrTo(t).Implements(marshalerType) {
 | 
						|
			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if t.Implements(textMarshalerType) {
 | 
						|
		return textMarshalerEncoder
 | 
						|
	}
 | 
						|
	if t.Kind() != reflect.Ptr && allowAddr {
 | 
						|
		if reflect.PtrTo(t).Implements(textMarshalerType) {
 | 
						|
			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	switch t.Kind() {
 | 
						|
	case reflect.Bool:
 | 
						|
		return boolEncoder
 | 
						|
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
 | 
						|
		return intEncoder
 | 
						|
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
 | 
						|
		return uintEncoder
 | 
						|
	case reflect.Float32:
 | 
						|
		return float32Encoder
 | 
						|
	case reflect.Float64:
 | 
						|
		return float64Encoder
 | 
						|
	case reflect.String:
 | 
						|
		return stringEncoder
 | 
						|
	case reflect.Interface:
 | 
						|
		return interfaceEncoder
 | 
						|
	case reflect.Struct:
 | 
						|
		return newStructEncoder(t)
 | 
						|
	case reflect.Map:
 | 
						|
		return newMapEncoder(t)
 | 
						|
	case reflect.Slice:
 | 
						|
		return newSliceEncoder(t)
 | 
						|
	case reflect.Array:
 | 
						|
		return newArrayEncoder(t)
 | 
						|
	case reflect.Ptr:
 | 
						|
		return newPtrEncoder(t)
 | 
						|
	default:
 | 
						|
		return unsupportedTypeEncoder
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func invalidValueEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	e.WriteString("null")
 | 
						|
}
 | 
						|
 | 
						|
func marshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	if v.Kind() == reflect.Ptr && v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	m := v.Interface().(Marshaler)
 | 
						|
	b, err := m.MarshalJSON()
 | 
						|
	if err == nil {
 | 
						|
		// copy JSON into buffer, checking validity.
 | 
						|
		err = compact(&e.Buffer, b, true)
 | 
						|
	}
 | 
						|
	if err != nil {
 | 
						|
		e.error(&MarshalerError{v.Type(), err})
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func addrMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	va := v.Addr()
 | 
						|
	if va.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	m := va.Interface().(Marshaler)
 | 
						|
	b, err := m.MarshalJSON()
 | 
						|
	if err == nil {
 | 
						|
		// copy JSON into buffer, checking validity.
 | 
						|
		err = compact(&e.Buffer, b, true)
 | 
						|
	}
 | 
						|
	if err != nil {
 | 
						|
		e.error(&MarshalerError{v.Type(), err})
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func textMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	if v.Kind() == reflect.Ptr && v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	m := v.Interface().(encoding.TextMarshaler)
 | 
						|
	b, err := m.MarshalText()
 | 
						|
	if err != nil {
 | 
						|
		e.error(&MarshalerError{v.Type(), err})
 | 
						|
	}
 | 
						|
	e.stringBytes(b)
 | 
						|
}
 | 
						|
 | 
						|
func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	va := v.Addr()
 | 
						|
	if va.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	m := va.Interface().(encoding.TextMarshaler)
 | 
						|
	b, err := m.MarshalText()
 | 
						|
	if err != nil {
 | 
						|
		e.error(&MarshalerError{v.Type(), err})
 | 
						|
	}
 | 
						|
	e.stringBytes(b)
 | 
						|
}
 | 
						|
 | 
						|
func boolEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	if quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
	if v.Bool() {
 | 
						|
		e.WriteString("true")
 | 
						|
	} else {
 | 
						|
		e.WriteString("false")
 | 
						|
	}
 | 
						|
	if quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func intEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
 | 
						|
	if quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
	e.Write(b)
 | 
						|
	if quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func uintEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
 | 
						|
	if quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
	e.Write(b)
 | 
						|
	if quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
type floatEncoder int // number of bits
 | 
						|
 | 
						|
func (bits floatEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	f := v.Float()
 | 
						|
	if math.IsInf(f, 0) || math.IsNaN(f) {
 | 
						|
		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
 | 
						|
	}
 | 
						|
	b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
 | 
						|
	if quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
	e.Write(b)
 | 
						|
	if quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
var (
 | 
						|
	float32Encoder = (floatEncoder(32)).encode
 | 
						|
	float64Encoder = (floatEncoder(64)).encode
 | 
						|
)
 | 
						|
 | 
						|
func stringEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	if v.Type() == numberType {
 | 
						|
		numStr := v.String()
 | 
						|
		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
 | 
						|
		// we keep compatibility so check validity after this.
 | 
						|
		if numStr == "" {
 | 
						|
			numStr = "0" // Number's zero-val
 | 
						|
		}
 | 
						|
		if !isValidNumber(numStr) {
 | 
						|
			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
 | 
						|
		}
 | 
						|
		e.WriteString(numStr)
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if quoted {
 | 
						|
		sb, err := Marshal(v.String())
 | 
						|
		if err != nil {
 | 
						|
			e.error(err)
 | 
						|
		}
 | 
						|
		e.string(string(sb))
 | 
						|
	} else {
 | 
						|
		e.string(v.String())
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func interfaceEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	if v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	e.reflectValue(v.Elem())
 | 
						|
}
 | 
						|
 | 
						|
func unsupportedTypeEncoder(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	e.error(&UnsupportedTypeError{v.Type()})
 | 
						|
}
 | 
						|
 | 
						|
type structEncoder struct {
 | 
						|
	fields    []field
 | 
						|
	fieldEncs []encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (se *structEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	e.WriteByte('{')
 | 
						|
	first := true
 | 
						|
	for i, f := range se.fields {
 | 
						|
		fv := fieldByIndex(v, f.index)
 | 
						|
		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if first {
 | 
						|
			first = false
 | 
						|
		} else {
 | 
						|
			e.WriteByte(',')
 | 
						|
		}
 | 
						|
		e.string(f.name)
 | 
						|
		e.WriteByte(':')
 | 
						|
		se.fieldEncs[i](e, fv, f.quoted)
 | 
						|
	}
 | 
						|
	e.WriteByte('}')
 | 
						|
}
 | 
						|
 | 
						|
func newStructEncoder(t reflect.Type) encoderFunc {
 | 
						|
	fields := cachedTypeFields(t)
 | 
						|
	se := &structEncoder{
 | 
						|
		fields:    fields,
 | 
						|
		fieldEncs: make([]encoderFunc, len(fields)),
 | 
						|
	}
 | 
						|
	for i, f := range fields {
 | 
						|
		se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
 | 
						|
	}
 | 
						|
	return se.encode
 | 
						|
}
 | 
						|
 | 
						|
type mapEncoder struct {
 | 
						|
	elemEnc encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (me *mapEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
 | 
						|
	if v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	e.WriteByte('{')
 | 
						|
	var sv stringValues = v.MapKeys()
 | 
						|
	sort.Sort(sv)
 | 
						|
	for i, k := range sv {
 | 
						|
		if i > 0 {
 | 
						|
			e.WriteByte(',')
 | 
						|
		}
 | 
						|
		e.string(k.String())
 | 
						|
		e.WriteByte(':')
 | 
						|
		me.elemEnc(e, v.MapIndex(k), false)
 | 
						|
	}
 | 
						|
	e.WriteByte('}')
 | 
						|
}
 | 
						|
 | 
						|
func newMapEncoder(t reflect.Type) encoderFunc {
 | 
						|
	if t.Key().Kind() != reflect.String {
 | 
						|
		return unsupportedTypeEncoder
 | 
						|
	}
 | 
						|
	me := &mapEncoder{typeEncoder(t.Elem())}
 | 
						|
	return me.encode
 | 
						|
}
 | 
						|
 | 
						|
func encodeByteSlice(e *encodeState, v reflect.Value, _ bool) {
 | 
						|
	if v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	s := v.Bytes()
 | 
						|
	e.WriteByte('"')
 | 
						|
	if len(s) < 1024 {
 | 
						|
		// for small buffers, using Encode directly is much faster.
 | 
						|
		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
 | 
						|
		base64.StdEncoding.Encode(dst, s)
 | 
						|
		e.Write(dst)
 | 
						|
	} else {
 | 
						|
		// for large buffers, avoid unnecessary extra temporary
 | 
						|
		// buffer space.
 | 
						|
		enc := base64.NewEncoder(base64.StdEncoding, e)
 | 
						|
		enc.Write(s)
 | 
						|
		enc.Close()
 | 
						|
	}
 | 
						|
	e.WriteByte('"')
 | 
						|
}
 | 
						|
 | 
						|
// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
 | 
						|
type sliceEncoder struct {
 | 
						|
	arrayEnc encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
 | 
						|
	if v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	se.arrayEnc(e, v, false)
 | 
						|
}
 | 
						|
 | 
						|
func newSliceEncoder(t reflect.Type) encoderFunc {
 | 
						|
	// Byte slices get special treatment; arrays don't.
 | 
						|
	if t.Elem().Kind() == reflect.Uint8 {
 | 
						|
		return encodeByteSlice
 | 
						|
	}
 | 
						|
	enc := &sliceEncoder{newArrayEncoder(t)}
 | 
						|
	return enc.encode
 | 
						|
}
 | 
						|
 | 
						|
type arrayEncoder struct {
 | 
						|
	elemEnc encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
 | 
						|
	e.WriteByte('[')
 | 
						|
	n := v.Len()
 | 
						|
	for i := 0; i < n; i++ {
 | 
						|
		if i > 0 {
 | 
						|
			e.WriteByte(',')
 | 
						|
		}
 | 
						|
		ae.elemEnc(e, v.Index(i), false)
 | 
						|
	}
 | 
						|
	e.WriteByte(']')
 | 
						|
}
 | 
						|
 | 
						|
func newArrayEncoder(t reflect.Type) encoderFunc {
 | 
						|
	enc := &arrayEncoder{typeEncoder(t.Elem())}
 | 
						|
	return enc.encode
 | 
						|
}
 | 
						|
 | 
						|
type ptrEncoder struct {
 | 
						|
	elemEnc encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	if v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	pe.elemEnc(e, v.Elem(), quoted)
 | 
						|
}
 | 
						|
 | 
						|
func newPtrEncoder(t reflect.Type) encoderFunc {
 | 
						|
	enc := &ptrEncoder{typeEncoder(t.Elem())}
 | 
						|
	return enc.encode
 | 
						|
}
 | 
						|
 | 
						|
type condAddrEncoder struct {
 | 
						|
	canAddrEnc, elseEnc encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
 | 
						|
	if v.CanAddr() {
 | 
						|
		ce.canAddrEnc(e, v, quoted)
 | 
						|
	} else {
 | 
						|
		ce.elseEnc(e, v, quoted)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// newCondAddrEncoder returns an encoder that checks whether its value
 | 
						|
// CanAddr and delegates to canAddrEnc if so, else to elseEnc.
 | 
						|
func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
 | 
						|
	enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
 | 
						|
	return enc.encode
 | 
						|
}
 | 
						|
 | 
						|
func isValidTag(s string) bool {
 | 
						|
	if s == "" {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	for _, c := range s {
 | 
						|
		switch {
 | 
						|
		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
 | 
						|
			// Backslash and quote chars are reserved, but
 | 
						|
			// otherwise any punctuation chars are allowed
 | 
						|
			// in a tag name.
 | 
						|
		default:
 | 
						|
			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
 | 
						|
				return false
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
func fieldByIndex(v reflect.Value, index []int) reflect.Value {
 | 
						|
	for _, i := range index {
 | 
						|
		if v.Kind() == reflect.Ptr {
 | 
						|
			if v.IsNil() {
 | 
						|
				return reflect.Value{}
 | 
						|
			}
 | 
						|
			v = v.Elem()
 | 
						|
		}
 | 
						|
		v = v.Field(i)
 | 
						|
	}
 | 
						|
	return v
 | 
						|
}
 | 
						|
 | 
						|
func typeByIndex(t reflect.Type, index []int) reflect.Type {
 | 
						|
	for _, i := range index {
 | 
						|
		if t.Kind() == reflect.Ptr {
 | 
						|
			t = t.Elem()
 | 
						|
		}
 | 
						|
		t = t.Field(i).Type
 | 
						|
	}
 | 
						|
	return t
 | 
						|
}
 | 
						|
 | 
						|
// stringValues is a slice of reflect.Value holding *reflect.StringValue.
 | 
						|
// It implements the methods to sort by string.
 | 
						|
type stringValues []reflect.Value
 | 
						|
 | 
						|
func (sv stringValues) Len() int           { return len(sv) }
 | 
						|
func (sv stringValues) Swap(i, j int)      { sv[i], sv[j] = sv[j], sv[i] }
 | 
						|
func (sv stringValues) Less(i, j int) bool { return sv.get(i) < sv.get(j) }
 | 
						|
func (sv stringValues) get(i int) string   { return sv[i].String() }
 | 
						|
 | 
						|
// NOTE: keep in sync with stringBytes below.
 | 
						|
func (e *encodeState) string(s string) int {
 | 
						|
	len0 := e.Len()
 | 
						|
	e.WriteByte('"')
 | 
						|
	start := 0
 | 
						|
	for i := 0; i < len(s); {
 | 
						|
		if b := s[i]; b < utf8.RuneSelf {
 | 
						|
			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
 | 
						|
				i++
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			if start < i {
 | 
						|
				e.WriteString(s[start:i])
 | 
						|
			}
 | 
						|
			switch b {
 | 
						|
			case '\\', '"':
 | 
						|
				e.WriteByte('\\')
 | 
						|
				e.WriteByte(b)
 | 
						|
			case '\n':
 | 
						|
				e.WriteByte('\\')
 | 
						|
				e.WriteByte('n')
 | 
						|
			case '\r':
 | 
						|
				e.WriteByte('\\')
 | 
						|
				e.WriteByte('r')
 | 
						|
			case '\t':
 | 
						|
				e.WriteByte('\\')
 | 
						|
				e.WriteByte('t')
 | 
						|
			default:
 | 
						|
				// This encodes bytes < 0x20 except for \n and \r,
 | 
						|
				// as well as <, > and &. The latter are escaped because they
 | 
						|
				// can lead to security holes when user-controlled strings
 | 
						|
				// are rendered into JSON and served to some browsers.
 | 
						|
				e.WriteString(`\u00`)
 | 
						|
				e.WriteByte(hex[b>>4])
 | 
						|
				e.WriteByte(hex[b&0xF])
 | 
						|
			}
 | 
						|
			i++
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		c, size := utf8.DecodeRuneInString(s[i:])
 | 
						|
		if c == utf8.RuneError && size == 1 {
 | 
						|
			if start < i {
 | 
						|
				e.WriteString(s[start:i])
 | 
						|
			}
 | 
						|
			e.WriteString(`\ufffd`)
 | 
						|
			i += size
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		// U+2028 is LINE SEPARATOR.
 | 
						|
		// U+2029 is PARAGRAPH SEPARATOR.
 | 
						|
		// They are both technically valid characters in JSON strings,
 | 
						|
		// but don't work in JSONP, which has to be evaluated as JavaScript,
 | 
						|
		// and can lead to security holes there. It is valid JSON to
 | 
						|
		// escape them, so we do so unconditionally.
 | 
						|
		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
 | 
						|
		if c == '\u2028' || c == '\u2029' {
 | 
						|
			if start < i {
 | 
						|
				e.WriteString(s[start:i])
 | 
						|
			}
 | 
						|
			e.WriteString(`\u202`)
 | 
						|
			e.WriteByte(hex[c&0xF])
 | 
						|
			i += size
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		i += size
 | 
						|
	}
 | 
						|
	if start < len(s) {
 | 
						|
		e.WriteString(s[start:])
 | 
						|
	}
 | 
						|
	e.WriteByte('"')
 | 
						|
	return e.Len() - len0
 | 
						|
}
 | 
						|
 | 
						|
// NOTE: keep in sync with string above.
 | 
						|
func (e *encodeState) stringBytes(s []byte) int {
 | 
						|
	len0 := e.Len()
 | 
						|
	e.WriteByte('"')
 | 
						|
	start := 0
 | 
						|
	for i := 0; i < len(s); {
 | 
						|
		if b := s[i]; b < utf8.RuneSelf {
 | 
						|
			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
 | 
						|
				i++
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			if start < i {
 | 
						|
				e.Write(s[start:i])
 | 
						|
			}
 | 
						|
			switch b {
 | 
						|
			case '\\', '"':
 | 
						|
				e.WriteByte('\\')
 | 
						|
				e.WriteByte(b)
 | 
						|
			case '\n':
 | 
						|
				e.WriteByte('\\')
 | 
						|
				e.WriteByte('n')
 | 
						|
			case '\r':
 | 
						|
				e.WriteByte('\\')
 | 
						|
				e.WriteByte('r')
 | 
						|
			case '\t':
 | 
						|
				e.WriteByte('\\')
 | 
						|
				e.WriteByte('t')
 | 
						|
			default:
 | 
						|
				// This encodes bytes < 0x20 except for \n and \r,
 | 
						|
				// as well as <, >, and &. The latter are escaped because they
 | 
						|
				// can lead to security holes when user-controlled strings
 | 
						|
				// are rendered into JSON and served to some browsers.
 | 
						|
				e.WriteString(`\u00`)
 | 
						|
				e.WriteByte(hex[b>>4])
 | 
						|
				e.WriteByte(hex[b&0xF])
 | 
						|
			}
 | 
						|
			i++
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		c, size := utf8.DecodeRune(s[i:])
 | 
						|
		if c == utf8.RuneError && size == 1 {
 | 
						|
			if start < i {
 | 
						|
				e.Write(s[start:i])
 | 
						|
			}
 | 
						|
			e.WriteString(`\ufffd`)
 | 
						|
			i += size
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		// U+2028 is LINE SEPARATOR.
 | 
						|
		// U+2029 is PARAGRAPH SEPARATOR.
 | 
						|
		// They are both technically valid characters in JSON strings,
 | 
						|
		// but don't work in JSONP, which has to be evaluated as JavaScript,
 | 
						|
		// and can lead to security holes there. It is valid JSON to
 | 
						|
		// escape them, so we do so unconditionally.
 | 
						|
		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
 | 
						|
		if c == '\u2028' || c == '\u2029' {
 | 
						|
			if start < i {
 | 
						|
				e.Write(s[start:i])
 | 
						|
			}
 | 
						|
			e.WriteString(`\u202`)
 | 
						|
			e.WriteByte(hex[c&0xF])
 | 
						|
			i += size
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		i += size
 | 
						|
	}
 | 
						|
	if start < len(s) {
 | 
						|
		e.Write(s[start:])
 | 
						|
	}
 | 
						|
	e.WriteByte('"')
 | 
						|
	return e.Len() - len0
 | 
						|
}
 | 
						|
 | 
						|
// A field represents a single field found in a struct.
 | 
						|
type field struct {
 | 
						|
	name      string
 | 
						|
	nameBytes []byte // []byte(name)
 | 
						|
 | 
						|
	tag       bool
 | 
						|
	index     []int
 | 
						|
	typ       reflect.Type
 | 
						|
	omitEmpty bool
 | 
						|
	quoted    bool
 | 
						|
}
 | 
						|
 | 
						|
func fillField(f field) field {
 | 
						|
	f.nameBytes = []byte(f.name)
 | 
						|
	return f
 | 
						|
}
 | 
						|
 | 
						|
// byName sorts field by name, breaking ties with depth,
 | 
						|
// then breaking ties with "name came from json tag", then
 | 
						|
// breaking ties with index sequence.
 | 
						|
type byName []field
 | 
						|
 | 
						|
func (x byName) Len() int { return len(x) }
 | 
						|
 | 
						|
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
 | 
						|
 | 
						|
func (x byName) Less(i, j int) bool {
 | 
						|
	if x[i].name != x[j].name {
 | 
						|
		return x[i].name < x[j].name
 | 
						|
	}
 | 
						|
	if len(x[i].index) != len(x[j].index) {
 | 
						|
		return len(x[i].index) < len(x[j].index)
 | 
						|
	}
 | 
						|
	if x[i].tag != x[j].tag {
 | 
						|
		return x[i].tag
 | 
						|
	}
 | 
						|
	return byIndex(x).Less(i, j)
 | 
						|
}
 | 
						|
 | 
						|
// byIndex sorts field by index sequence.
 | 
						|
type byIndex []field
 | 
						|
 | 
						|
func (x byIndex) Len() int { return len(x) }
 | 
						|
 | 
						|
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
 | 
						|
 | 
						|
func (x byIndex) Less(i, j int) bool {
 | 
						|
	for k, xik := range x[i].index {
 | 
						|
		if k >= len(x[j].index) {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
		if xik != x[j].index[k] {
 | 
						|
			return xik < x[j].index[k]
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return len(x[i].index) < len(x[j].index)
 | 
						|
}
 | 
						|
 | 
						|
// typeFields returns a list of fields that JSON should recognize for the given type.
 | 
						|
// The algorithm is breadth-first search over the set of structs to include - the top struct
 | 
						|
// and then any reachable anonymous structs.
 | 
						|
func typeFields(t reflect.Type) []field {
 | 
						|
	// Anonymous fields to explore at the current level and the next.
 | 
						|
	current := []field{}
 | 
						|
	next := []field{{typ: t}}
 | 
						|
 | 
						|
	// Count of queued names for current level and the next.
 | 
						|
	count := map[reflect.Type]int{}
 | 
						|
	nextCount := map[reflect.Type]int{}
 | 
						|
 | 
						|
	// Types already visited at an earlier level.
 | 
						|
	visited := map[reflect.Type]bool{}
 | 
						|
 | 
						|
	// Fields found.
 | 
						|
	var fields []field
 | 
						|
 | 
						|
	for len(next) > 0 {
 | 
						|
		current, next = next, current[:0]
 | 
						|
		count, nextCount = nextCount, map[reflect.Type]int{}
 | 
						|
 | 
						|
		for _, f := range current {
 | 
						|
			if visited[f.typ] {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			visited[f.typ] = true
 | 
						|
 | 
						|
			// Scan f.typ for fields to include.
 | 
						|
			for i := 0; i < f.typ.NumField(); i++ {
 | 
						|
				sf := f.typ.Field(i)
 | 
						|
				if sf.PkgPath != "" && !sf.Anonymous { // unexported
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				tag := sf.Tag.Get("json")
 | 
						|
				if tag == "-" {
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				name, opts := parseTag(tag)
 | 
						|
				if !isValidTag(name) {
 | 
						|
					name = ""
 | 
						|
				}
 | 
						|
				index := make([]int, len(f.index)+1)
 | 
						|
				copy(index, f.index)
 | 
						|
				index[len(f.index)] = i
 | 
						|
 | 
						|
				ft := sf.Type
 | 
						|
				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
 | 
						|
					// Follow pointer.
 | 
						|
					ft = ft.Elem()
 | 
						|
				}
 | 
						|
 | 
						|
				// Only strings, floats, integers, and booleans can be quoted.
 | 
						|
				quoted := false
 | 
						|
				if opts.Contains("string") {
 | 
						|
					switch ft.Kind() {
 | 
						|
					case reflect.Bool,
 | 
						|
						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
 | 
						|
						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
 | 
						|
						reflect.Float32, reflect.Float64,
 | 
						|
						reflect.String:
 | 
						|
						quoted = true
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				// Record found field and index sequence.
 | 
						|
				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
 | 
						|
					tagged := name != ""
 | 
						|
					if name == "" {
 | 
						|
						name = sf.Name
 | 
						|
					}
 | 
						|
					fields = append(fields, fillField(field{
 | 
						|
						name:      name,
 | 
						|
						tag:       tagged,
 | 
						|
						index:     index,
 | 
						|
						typ:       ft,
 | 
						|
						omitEmpty: opts.Contains("omitempty"),
 | 
						|
						quoted:    quoted,
 | 
						|
					}))
 | 
						|
					if count[f.typ] > 1 {
 | 
						|
						// If there were multiple instances, add a second,
 | 
						|
						// so that the annihilation code will see a duplicate.
 | 
						|
						// It only cares about the distinction between 1 or 2,
 | 
						|
						// so don't bother generating any more copies.
 | 
						|
						fields = append(fields, fields[len(fields)-1])
 | 
						|
					}
 | 
						|
					continue
 | 
						|
				}
 | 
						|
 | 
						|
				// Record new anonymous struct to explore in next round.
 | 
						|
				nextCount[ft]++
 | 
						|
				if nextCount[ft] == 1 {
 | 
						|
					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	sort.Sort(byName(fields))
 | 
						|
 | 
						|
	// Delete all fields that are hidden by the Go rules for embedded fields,
 | 
						|
	// except that fields with JSON tags are promoted.
 | 
						|
 | 
						|
	// The fields are sorted in primary order of name, secondary order
 | 
						|
	// of field index length. Loop over names; for each name, delete
 | 
						|
	// hidden fields by choosing the one dominant field that survives.
 | 
						|
	out := fields[:0]
 | 
						|
	for advance, i := 0, 0; i < len(fields); i += advance {
 | 
						|
		// One iteration per name.
 | 
						|
		// Find the sequence of fields with the name of this first field.
 | 
						|
		fi := fields[i]
 | 
						|
		name := fi.name
 | 
						|
		for advance = 1; i+advance < len(fields); advance++ {
 | 
						|
			fj := fields[i+advance]
 | 
						|
			if fj.name != name {
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if advance == 1 { // Only one field with this name
 | 
						|
			out = append(out, fi)
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		dominant, ok := dominantField(fields[i : i+advance])
 | 
						|
		if ok {
 | 
						|
			out = append(out, dominant)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	fields = out
 | 
						|
	sort.Sort(byIndex(fields))
 | 
						|
 | 
						|
	return fields
 | 
						|
}
 | 
						|
 | 
						|
// dominantField looks through the fields, all of which are known to
 | 
						|
// have the same name, to find the single field that dominates the
 | 
						|
// others using Go's embedding rules, modified by the presence of
 | 
						|
// JSON tags. If there are multiple top-level fields, the boolean
 | 
						|
// will be false: This condition is an error in Go and we skip all
 | 
						|
// the fields.
 | 
						|
func dominantField(fields []field) (field, bool) {
 | 
						|
	// The fields are sorted in increasing index-length order. The winner
 | 
						|
	// must therefore be one with the shortest index length. Drop all
 | 
						|
	// longer entries, which is easy: just truncate the slice.
 | 
						|
	length := len(fields[0].index)
 | 
						|
	tagged := -1 // Index of first tagged field.
 | 
						|
	for i, f := range fields {
 | 
						|
		if len(f.index) > length {
 | 
						|
			fields = fields[:i]
 | 
						|
			break
 | 
						|
		}
 | 
						|
		if f.tag {
 | 
						|
			if tagged >= 0 {
 | 
						|
				// Multiple tagged fields at the same level: conflict.
 | 
						|
				// Return no field.
 | 
						|
				return field{}, false
 | 
						|
			}
 | 
						|
			tagged = i
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if tagged >= 0 {
 | 
						|
		return fields[tagged], true
 | 
						|
	}
 | 
						|
	// All remaining fields have the same length. If there's more than one,
 | 
						|
	// we have a conflict (two fields named "X" at the same level) and we
 | 
						|
	// return no field.
 | 
						|
	if len(fields) > 1 {
 | 
						|
		return field{}, false
 | 
						|
	}
 | 
						|
	return fields[0], true
 | 
						|
}
 | 
						|
 | 
						|
var fieldCache struct {
 | 
						|
	sync.RWMutex
 | 
						|
	m map[reflect.Type][]field
 | 
						|
}
 | 
						|
 | 
						|
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
 | 
						|
func cachedTypeFields(t reflect.Type) []field {
 | 
						|
	fieldCache.RLock()
 | 
						|
	f := fieldCache.m[t]
 | 
						|
	fieldCache.RUnlock()
 | 
						|
	if f != nil {
 | 
						|
		return f
 | 
						|
	}
 | 
						|
 | 
						|
	// Compute fields without lock.
 | 
						|
	// Might duplicate effort but won't hold other computations back.
 | 
						|
	f = typeFields(t)
 | 
						|
	if f == nil {
 | 
						|
		f = []field{}
 | 
						|
	}
 | 
						|
 | 
						|
	fieldCache.Lock()
 | 
						|
	if fieldCache.m == nil {
 | 
						|
		fieldCache.m = map[reflect.Type][]field{}
 | 
						|
	}
 | 
						|
	fieldCache.m[t] = f
 | 
						|
	fieldCache.Unlock()
 | 
						|
	return f
 | 
						|
}
 |